

Clinical presentation of DHTR and hyperhemolysis in Sickle Cell Disease

Ross M. Fasano, MD Director of Apheresis, Children's Healthcare of Atlanta Pediatric Hematologist, Children's Healthcare of Atlanta

Associate Professor, Pathology & Laboratory Medicine, Hematology

Emory University School of Medicine

rfasano@emory.edu

Disclosures

• No relevant conflicts

Introductory Case

- 14 year old female with HbSS with the following PMH:
 DHTRs x 2
 - RBC Abs: anti-S, anti-Di^a, anti-Sd^a, cold agglutinin
- presented with significant VOC pain and Hb 5.6 g/dL- dropped to 3.9 g/dL within 24 hours of admission (no preceding RBC transfusion).
- Received 3 units of RBC units (extended matched, S-negative, Di^a-negative, crossmatch compatible)
- Discharged home with Hb of 9.5 g/dL.

Introductory Case

- Presented 8 days later with generalized pain, fever, hemoglobinuria, and bilirubin 7.3 mg/dL. HGB declined sharply with worsening of intravascular hemolysis (elevated free plasma hemoglobin 100 mg/dL, worsening hemoglobinuria, and LDH peak of 1753 U/L) along with elevated transaminases).
- DAT and antibody testing were again negative.
- On day 14, Hb =1.9 g/dL, creatinine doubled, with worsening pain, altered mental status, and development of new diffuse pulmonary edema requiring positive airway pressure support.

Introductory Case

Chonat S, et al Haematologica: 2018

RBC Alloimmunization Rates

Complications of Alloimmunization

Inventory / Cost

- Difficulty or impossibility of finding compatible RBC units
- Increased <u>cost</u> and <u>risk</u> to patient

Future BMT Implications

- Associations found in SCD patients
 between RBC Abs and HLA Abs
- Predisposition to graft rejection in SCD patients undergoing BMT (?)

Delayed Hemolytic Transfusion Reaction (DHTR)

- The most feared transfusion complication in SCD patients
- <u>Hyperhemolysis</u> (bystander hemolysis) unique to SCD
- <u>Ab-Negative DHTR</u>: Process attributed to antibodyindependent macrophage activation.
- <u>Autoantibodies</u>: Further complicate clinical picture, and potentially contribute to hyperhemolysis
- **<u>DHTR Treatment:</u>** Remains controversial because the exact mechanisms remain unclear
 - EPO / IVIG / Steroids / Rituxan / Eculizumab / Bortezomib
 - Avoidance of RBC transfusion

Incidence of DHTRs

8

DHTR incidence in SCD

Report	# of patients	# of transfusions	DHTR incidence (% of patients)	DHTR rate (per transfusion)
Vidler, et al. 2015 (PMID: 25753472)	220	2158 591 (acute) 1567 (chronic)	7.7%	1.1% 3.5% 0.1%
Narbey, et al. 2017 (PMID: 28924974)	311	694 360 (acute) 334 (chronic)	4.8 %	2.1% 4.2% 0%

Children's Healthcare of Atlanta | Emory University

Pathophysiology of DHTR

DHTRs in Adult SCD: Presentations

Sign/Symptom (N=99)	Result (median, IQR)			
Laboratory findings				
• Days after transfusion to DHTR Dx	10 days (8 to 14)			
• ΔHb (post-trxn to DHTR)	4.6 g/dL (3.1 to 5.3)			
• Hb nadir	5.5 g/dL (4.6 to 6.3)			
• LDH max	1335 IU/mL (798 to 2086)			
Lowest retic count	180 k/μL (121 to 240)			
Clinical findings at DHTR presentation				
 Hemoglobinuria Pain 	96%			
• Fever	64 %			
Symptoms of anemia	44%			
Complications during DHTR				
• ACS	50%			
Hepatic impairment Denal failure	35%			
• Death	6 %			

Habibi A, et al. Am J Hematol. 2016

DHTRs in adult SCD: Treatment and Outcomes

Treatment (n: 99)	Result (%)
Non-specific supportive care measures	54%
EPO (10,000–60,000 IU total) + Corticosteroids	45% 3%
+ IVIG + Eculizumab	4% 2%
+ Rituximab	2%
Transfusion	35%
 Determined ineffective 	• 69% (24/35)
 HbA = 0% within 2 wks of trxn 	• 51% (18/35)
 Died of exacerbated hemolysis and MOF 	• 14% (5/35)

DHTRs in SCD: Immunohematological Characteristics

Habibi A, et al. Am J Hematol. 2016

Prevention of DHTRs

1. Reduce risk of RBC alloimmunization

- Prophylactic matching (for Rh (C/c, E/e, K)
- Judicious use of RBC transfusions (i.e. avoid transfusion for simple VOC)
- Identify Antibody "Responders" from "Non-responders" (in the future)

2. <u>Reduce the risk of missing the detection of a "transient" alloantibody</u>

- Follow-up antibody screens at set intervals (4-12 weeks) after every episodic transfusion
- Avoid multi-site transfusion
- Thorough transfusion history
- Reliable inter-institutional blood bank communication

3. <u>Reduce the risk of re-exposure to an "evanesced" alloantibody</u>

- Avoid multi-site transfusion
- Thorough transfusion history
- Reliable inter-institutional blood bank communication

RBC Antigen Matching

	Study	Ν	Matching	Patient % w/ AlloAbs	Rate (AlloAb/100 units)
	Rosse et al. 1990	1044	ABO, D	27%	n/a
	Vichinsky et al. 1990	107	ABO, D	30%	n/a
	Aygun et al. 2002	140	ABO, D	37%	2.8
	Castro et al. 2002	351	ABO, D	29%	3.8
	Sakhalkar et al. 2005	387	ABO, D	31%	1.7
e-Based	Vichinsky et al. 2001	61	Limited (C, E, K)	11%	0.5
ment of ell Disease Report, 2014	Sakhalkar et al. 2005	113	Limited (C, E, K)	5%	0.26
	Chou et al. 2013	182	Limited (C, E, K)*	44%	0.33
	Debaun et al. 2014	90	Limited (C, E, K)	4.5%	0.28
	Lasalle-Williams et al. 2011	99	Extended matching ⁺	7%	0.1
	Tahhan et al. 1994	40	Extended matching §	0%	n/a

* from African-American donors † C, E, K, Fy^a, Fy^b, Jk^a, Jk^b, § C, E, K, Fy^a, Fy^b, Jk^a, Jk^b, S

Children's Healthcare of Atlanta | Emory University

Judicious use of RBC transfusions is recommended during acute sickle cell events

Table V. Multivariate analysis of the effect of inflammatory events on alloimmunization.

N = 52 patients (3166 transfusions)	Odds ratio (OR)	95% Confidence interval		
Events				
Any inflammatory event	8.9	5.9-13.5		
ACS	13.2	8.4-20.8		
VOC	8.7	3.5-21.5		
Elective surgery	4.6	1.9-11.1		
AFI	$4 \cdot 1$	1.7 - 9.7		
SS/AIS/Aplastic Crisis/Priapism	$4 \cdot 0^{*}$	1.6-10.1		
Match level				
1-4 vs. 0	0.18†	0.12-0.28		
Storage solution				
CPD(A) vs. AS	1.4^{+}	0.92-2.12		

Figure 1. Effect of level of matching on alloimmunization. Graph represents effect of red blood cell (RBC) unit level of matching on probability of alloimmunization with error bars illustrating 95% confidence intervals (± 2 standard deviations) (P < 0.0001 for trend).

Fasano RM, et al. Br J Haematol. 2015

Multi-site transfusion in SCD patients

Number of hospitals in which SCD patients receive ≥1 RBC transfusion

Number of hospital admissions for transfusion in SCD patients with evanesced antibodies

Harm SK, et al. Am J Clin Pathol 2014

Prevention of DHTRs

Clinical considerations?

- 1. What are the ways to <u>prevent</u> and <u>treat</u> recurrent DHTRs in SCD patients?
 - Transfusions (matching, transfusion triggers, complex evaluations by BB/IRL)?
 - Medications (EPO, IVIG, steroids, Rituxan, Eculizumab, Bortezomib, etc...)?
- 2. Are all DHTRs created equal?
 - <u>Ab+</u>vs. <u>concurrent alloantibodies with autoantibodies</u> vs. <u>Ab-</u>?
- 3. How to manage SCD patients when transfusion is unavoidable?
 - Eg. Life threatening DHTRs, Moya moya surgery, curative BMT, etc?
- 4. Should definitive therapies be delayed/avoided if transfusions are needed?

Conclusions

- Transfusions should be used judiciously in the management of acute sickle cell complications
- DHTRs in 5-7% of SCD patients which can be life-threatening (6% mortality).
- Clinicians and blood banks should attempt to reduce the risk alloimmunization by providing phenotypically matched RBCs.
- It is **imperative** to get a transfusion history from every patient in order to minimize risk of DHTRs.
- Clinicians and blood banks should recognize patients with Ab-negative DHTRs and avoid RBC transfusions in those patients.
- Ab-negative DHTRs are impossible to prevent with current Blood Bank best practices when there never has been an Ab ever identified
- More investigation is needed to understand the mechanisms involved in antibodymediated and antibody-independent clearance of RBCs to prevent/treat DHTRs.

Reducing complications of therapeutic blood transfusion in sickle cell disease

Introduction

Use of blood transfusion during acute illness

Delayed hemolytic transfusion reactions

Management of chronic transfusion

CME & CNE available

ghpc.gsu.edu/cme

Supplemental slides

Case- presentation

- Patient presents acute VOC, with word-finding difficulties -an expressive aphasia (previous strokes presented similarly).
- PE: NIHSS 5 for (mental status questions: could not say month), RUE drift, R facial weakness, and mild anomia.
- MRI upon admission: <u>no acute</u> stroke and chronic L ACA/MCA distribution encephalomalacia
- Dx: Sickle Cell Crisis/w recrudescence of old stroke symptoms (AKA no acute stroke)
- Primary team requested an emergent red cell exchange.

Case- baseline MRA

Case- DHTR (No antibody identified)

- Patient re-presented 7 days post RBCX with diffuse intense body pain in bilateral arms, legs and back
- Received <u>5 more units RBCs</u> for dropping Hb.
- UA: + hemoglobinuria (D+7, D+28). Ab screens and DAT: negative

Case continued...

- Patient re-presented to clinic with pain and new worsened right hemiparesis and expressive aphasia.
- MRI showed a new left MCA ischemic stroke

ANC 2900 /μL Retic: 1.7% ARC: 14.8k /μL

• Dx: Aplastic crisis, new ischemic stroke

Why Rituximab?

- Rituximab targets CD20, and induces B cell depletion
 - should inhibit primary or secondary immune response to blood group antigens
- Rituximab is effective in depleting B cells in NHL
- Rituximab has been effective in treating many autoimmune disorders that Ab-dependent (e.g. AIHA, ITP, TTP, SLE, etc...)
- Is Rituximab effective in <u>Ab-negative</u> DHTRs?

Prevention of DHTR with Rituximab

• Retrospective analysis of 8 SCD patients with multiple antibodies and with previous history of life threatening DHTR (1 to 4 episodes of DHTR)

Pre-Treatment

- 2 different Rituximab regimens depending on the patient condition
 - <u>Ritux 1,000 mg x2</u>, 2 weeks apart, (D-30, D-15) before the procedure
 - planned surgery requiring transfusion
 - <u>Ritux 1,000 mg x1</u>
 - acute conditions requiring urgent transfusion
 - In all cases, 10 mg of methylprednisolone (usual dose 100 mg)

<u>Transfusion</u>

Extended matched RBCs (Rh/K/Fy/Jk/MNS) and negative for previous antibodies

Noizat-Pirenne, Vox Sanguinis, 2015

Prevention of DHTR with Rituximab

• Clinical course (N=8)

- Median drop of Hb from post-trxn Hb: **1.3 g/dl** (range 0 to 3.8 g/dl)
- Median LDH max: 461 IU/mL (range: 271-1180)
- 5 patients : no DHTR
- 3 patients : mild DHTR
 - 2 patients had mild clinical symptoms of intravascular hemolysis and/or exacerbation of VOC

Post transfusion serologic testing

– In all patients : no new formed antibodies, DAT remains negative

Case continued... No evidence of DHTR

Published Cases of Ab-negative DHTR

34

DHTRs in SCD: Immunohematological Characteristics

Potential mechanism for Ab-negative DHTRs: Suicidal RBC death from PS exposure

 PS exposure is a signal for eryptosis—suicidal RBC death—involving membrane shedding and leading to the physiologic clearance of apoptotic cells by <u>macrophages</u>, via specific PS receptors

Chadebech P, et al. Transfusion. 2009

Eculizumab salvage therapy for Ab-negative DHTRs in SCD patients

Plasma exchange Eculizumab EPO 120 -9500 8500 100 7500 Hb (g/L); HbA% (% total Hb) 6500 80 5500 4500 60 3500 2500 1500 JUN HO. 500 400 20 200 22 days --- retic LDH

- 20 yr male w/ HbSS- developed severe VOC/dark urine 6 days post 6 U RBCs for acute stroke
- Dx: DHTR with negative DAT and reticulocytopenia
- EPO and Eculizumab given with improvement of VOC and hemoglobinuria within 24 hrs of 1st dose of Eculizumab
- 17 yr male w/ HbSS- severe ACS and dark-colored urine 7 days post 2 U RBCs to treat VOC. MSOF developed after another RBC transfusion (2 U).
- Dx: DHTR with negative DAT and reticulocytopenia
- **EPO and TPE followed by Eculizumab** given with gradual improvement over subsesequent 40 days.

Dumas G. et al. Blood 2016

Why Bortezomib?

- Proteasome inhibitor which blocks NF-кB activation
 - Causes accumulation of misfolded proteins
 - Leads to cell apoptosis, particularly plasma cells.
- Bortezomib effective treatment of multiple myeloma and NHL.
- Bortezomib shown to ameliorate clinical manifestations of refractory SLE*
- Selective apoptosis also occurs in monocytes and monocyte-derived DCs**

*Alexander T, et al. Ann Rheum Dis. 2015 **Arpinati M, et al. BMT. 2009

Ab-negative DHTRs: Suicidal Red Cells Proposed mechanism

DHTRs: Proposed mechanism and potential treatments

- Patient needs a neurosurgical intervention (EDAS) for severe moya moya dz.
 - Proceed or not proceed?

DON'T POKE THE BEAR