

Delayed hemolytic transfusion reaction in sickle cell disease patients - Créteil, France

Immuno-hematological findings in Delayed Hemolytic Transfusion Reaction (DHTR)

Dr THONIER, VINCENT (1)

⁽¹⁾ Institut National de la Transfusion Sanguine (INTS), Paris cedex 11, France Phone : 33 1 55 25 12 06 E-mail : vthoniergints.fr Créteil, France

Créteil, France December 17, 2018

1

Transfusion is still a key therapeutic tool in SCD patient management

Features of blood transfusion in children with sickle cell disease

Marie-Hélène Odièvre^{1,2,3} Thierry Peyrard^{1,2,4} mt pédiatrie 2017 ; 20(4) :254-64 doi:10.1684/mtp.2018.0659

- General population in 2016 => 0,78 % (Annual report hemovigilance 2016 ANSM)
- 150 SCD children (0,1-18 y/o) : 53 % were transfused at least once
- Another cohort of 245 children : 71 % were transfused at least once

British Journal of Haematology, 2017, 177, 641-647

Chronic exposure to blood transfusion => 2 main complications :

- Iron overload
- <u>Risk of allo-immunization</u>

Discrepancies between recipients and donors

<u>Risk of allo-immunization</u> => Phenotype discrepancies between recipients (African descendants) and donors (mostly europeans)

« Typical SCD recipient phenotype » :

RH:1,-2,-3,4,5; KEL:-1; FY:-1,-2; JK:1,-2; MNS:-3,4

Geographic distribution of the R⁰ haplotype

Geographic distribution of the FY*02N.01 allele

Geographic distribution of the GYPB*03 allele

to 2. Repetition mendels of Filler J.Q.

Geographic distribution of the JK*02 allele

Discrepancies between recipients and donors

Group B

Diagram showing the distribution of ABO phenotypes in six selected populations

Human Blood Groups, Third Edition. Geoff Daniels. Page 31 © 2013 Geoff Daniels. Published 2013 by Blackwell Publishing Ltd.

Geographic distribution of KEL*02.06 (encoding]s^a or KEL6)

les groupes sanguins érythrocytaires, Première édition. P.Bailly et al. © 2015 John Libbey Eurotext, Paris.2015

Prevalence => up to 20 % - Not really a low frequency antigen I

Discrepancies between recipients and donors

Red blood cell immunization in sickle cell disease: evidence of a large responder group and a low rate of anti-Rh linked to partial Rh phenotype Monique Silvy,^{1,2} Christophe Tournamille,^{3,4} Jérôme Babinet,³ Sadaf Pakdaman,^{3,4} Sylvain Cohen,³ Jacques Chiaroni,^{1,2} Frédéric Galactéros,^{4,5} Philippe Bierling,^{3,4} Pascal Bailly,^{1,2} and France Noizat-Pirenne^{3,4}

haematologica 2014; 99:e117

France - *RH* genotyping 403 patients

- \Rightarrow 34/403 with partial-D phenotype : 8,4 %
- \Rightarrow 21/101 with partial-C phenotype : 20,8 %
- \Rightarrow 14/400 with partial-e phenotype : 3,5 %

Allo Imminization rate 6/34: 17,6 % Allo Imminization rate 3/21: 14,3 % Allo Imminization rate 1/14: 7,1 % Anti-e seems to be mostly autoantibody

High prevalence of red blood cell alloimmunization in sickle cell disease despite transfusion from Rh-matched minority donors

Stella T. Chou,¹ Tannoa Jackson,¹ Sunitha Vege,² Kim Smith-Whitley,¹ David F. Friedman,^{1,3} and Connie M. Westhoff²

BLOOD, 8 AUGUST 2013 · VOLUME 122, NUMBER 6

USA - RH genotyping 226 patients (Bead chip / BioArray and Sequencing)

- \Rightarrow *RHD* variant <u>alleles</u> in 36% of individuals
- \Rightarrow *RHCE*ce* variant <u>alleles</u> in 72 % of individuals
- Nb : these alleles may be compensated => number of individuals is lower

Main features of the alloimmunization risk in SCD patients

• Much higher risk of immunization in SCD patients

3,9 % (general population)
7 % to 58 % (depending on unit selection policy)
23,4 % (pediatric cohort - 152 patients)
4 % to 16 % will experience a DTHR

BLOOD. 8 AUGUST 2013 · VOLUME 122. NUMBER 6 British Journal of Haematology, 2017, **177**, 641–647

6

SOr2-2 Séances orales / Transfusion Clinique et Biologique 18 (2011) 328-337

Shood 2018 131: 2773-2781

- Once immunized 61% higher chance of developing a new Ab hermatologica 2014; 99:e11
- Presence of auto-Ab is risk factor for alloimmunization
- Evanesent Ab => up to 30 %
- Anti-RH2, anti-RH5, anti-RH1, anti-RH3, anti-FY1, anti-JK2, anti-MNS3 and anti-MNS1, anti-KEL3, anti-CO2 are the most common antibodies found

British Journal of Haematology, 2017, 177, 641–647

Transfusion Clinique et Biologique 15 (2008) 377-382

Which specificities do we focus on ?

7

- Anti-H111
- Anti-RH1 (Anti-D) / anti-RH2 (Anti-C) / anti-RH5 (Anti-e)
- Anti-JK2 or Anti-JK1 (Anti-Jk^b or Anti-Jk^a)
- Anti-MNS3 (Anti-S)
- Anti-LFA => Anti-KEL6 (Anti-Js^a) / Anti-RH10/20 (anti-V, anti-VS) / anti-RH23 (Anti-D^w)
- Anti-HFA => Anti-MNS5 (Anti-U) / Anti-MNS30 / anti-FY3 (Anti-Fy3) / Anti-DO4 (Anti-Hy) / Anti-DO5 (Anti-Jo^a) / anti-RH

- Ruling out every antibody of common specificity

RH1(D), RH2(C), RH3(E), RH4(c), RH5(e), RH8(Cw), KEL1(K), KEL2(k), KEL3(Kpª), KEL4(Kp^b), FY1(Fyª), FY2(Fy^b), JK1(Jkª), JK2(Jk^b), MNS1(M), MNS2(N), MNS3(S), MNS4(s), LE1(Le^a), LE2(Le^b), P1PK1(P1), LU1(Lu^a), LU2(Lu^b), DO1(Do^a), DO2(Do^b), LU1(Lu^a), LU2(Lu^b), CO1(Co^a), CO2(Co^b), YT1(Yt^a), YT2(Yt^b), XG1(Xg^a)

What molecular workup do we perform ?

- Never conclude autoantibody in the RH system without performing molecular workup
 - If patient C+ (RH:2) => tested for (C)ce^S and RN
 - If anti-D => genomics
 - If anti-e => testing for :
 - c.254C>G => RHCE*ceAG
 - c.340C>T => *RHCE*ceJAL*
 - c.667G>T => RHCE*ceMO
 - c.712A>G => RHCE*ceAR / RHCE*ceEK / RHCE*ceBI / RHCE*ceSM
 - c.1006G>T => RHCE*ce^S
 - c.1025C>T => *RHCE*ceT1*
- Perform an extended genotype to deduce the phenotype
 - DO1/DO2 (Do^a / Do^b)
 - RH10/RH20 (V/VS)
 - KEL6/KEL7 (Anti-Js^a /Anti-Js^b)

Delayed hemolytic transfusion reaction in sickle cell disease patients - Créteil, France

Different situations encountered when a DHTR was reported

- Patient O RH:-2,-3; KEL:-1; FY:-1,-2; JK:-2; MNS:-1,-3
- Immunized with Anti-RH2, Anti-MNS3, Autoantibodies
- In 2016 =>Transfused accidentally with 1 unit MNS:3 unit (pre-T Ab screen negative)
- 10 days post-transfusion => DHTR diagnosis Hb = 3g/dL
- Ab identification (+11 days) => Anti-RH2 + anti-MNS3 + anti-MNS1 + anti-FY3
- 1 year after => Ab screen negative

- In 2018 hip surgery : Transfusion of 1 unit (fully matched) with premedication => DTHR 8 days after
- In the CNRGS Ab screen was confirmed to be negative
- New transfusion needed (Hb= 3g/dL) at day 10 (signs of cardiac failure) => made with eculizumab

- Patient B RH:-2,-3; KEL:-1,-3; FY:-1,-2; JK:-2; MNS:-3
- Immunized : Anti-RH5 (auto), Anti-KEL3, Anti-JK1 (auto), Anti-JK2 and Anti-MNS3, Anti-FY3
- Since 2012, the antibody screen was negative (about 5 transfusion episodes)
- Sept 2017 VOC => 2 units (09/09) / 2 units (14/09) and a new prescription of 2 units (21/09) => no fresh units available
- Local blood bank's demand => frozen units to treat resitant VOC
- Stop II => High suspicion of a DHTR Hb= 5,9 g/dL
- Ab screen showed an « autoantibody anti-HFA » and anti-RH10 / anti-RH20
- [Hb] nadir = 4,6 g/dL

- Investigation of the imputability of anti-RH10/RH20
- Haemovigilance services called back the 4 donors of the 4 units transfused in September 2017
 - Phenotyped / genotyped
 - Cross match

Anti-RH10 / anti-RH20

- Interestingly, in the local blood bank => Xmatches were positive for some units (auto ? or a new alloantibody ?)
- Follow-up at 4 months : Autoantibody + anti-RH5 + anti-RH20 + anti-KEL3 + anti-MNS3
- Follow-up at 6 months : same specificities / same intensities
- New episode of DHTR 1 year after => Stand by of the bone marrow transplant

- Patient O RH:-3,P4; KEL:-1 (RHCE*ceBl at heterozygous state)
- Genotyping => FY*0/FY*0; JK*1/JK*2; MNS*4/MNS*4; DO*2/DO*2; MNS*1/MNS*2; KEL*6/KEL*7
- · Immunized : Anti-RH3, Anti-RH8, Anti-FY1, Anti-MNS3 and Anti-LE1
- 25-07 => Exchange transfusion (5 units)
 - RH:-3,-4; KEL:-1; FY:-1; JK:-2; MNS:-3.
- 03-08 => Cholecystectomy
- 04-08 => Suspicion of DHTR [Hb] nadir = 3,2 g/dL
- Ab screen in the local blood bank => pan agglutination

RH	KEL FY	JK LE MNS	P LU DO YT	CO XG	GEL GEL GEL GEL
123458	1234 12	12 12 12 3 4 5	1 2 19 1 2 1 2	12 1	P G PAPG TRYG
	+	+ + - + + + - + +	- + + + -	+ + +	H H H H
+ + + -	- + - + + -	+ + + +	+ - +		H H H
+ - <mark>-)</mark> + + <mark>-</mark>	-+	+ + + - +	Æ <mark>-</mark> + +	- ,	
+ - <mark>- </mark> + + <mark>-</mark>	•	+ + + - +	* -+		
+ - <mark>-</mark> + + <mark>-</mark>	+	+	+ - + - + + -	- <i>t</i>	# -
+ - <mark>-</mark> + + <mark>-</mark>	- + - +	+ 4 - 4	+ - + 1		(H) -
				Auto :	+++++

CNRGS identification of anti-FY3

Follow-up at 1 month : anti-FY3, anti-DO1, anti-KEL3, anti-RH3, anti-RH8 + « autoantibodies »

Other situations

- Patient with a complex mixture of auto and alloantibodies :
- Anti-RH3, anti-RH4, anti-RH5, anti-FY1, anti-MNS1, anti-MNS3 and anti-KEL6 (pre-transfusion Ab screen was negative)
- Anti-RH1 (auto), Anti-RH5(auto), Anti-RH7, Anti-KEL1, Anti-KEL3, anti-FY1, anti-FY3, anti-JK1, anti-DO1, anti-MNS2 (Ab still detectable)
 - GYPB sequencing to make sure that anti-MNS2 can be considered as an autoantobody => MNS:2 unit is safe to use.
- Sometimes what looks like an auto anti-U is an anti-MNS30 (alloantibody) => patient MNS:1,-2,-3,4 with a MNS*4 variant allele

Other situations

Anti-HI can cause a severe delayed hemolytic transfusion reaction with hyperhemolysis in sickle cell disease patients

Clara Ibanez,¹ Anoosha Habibi,^{2,3,4} Armand Mekontso-Dessap,⁵ Philippe Chadebech,^{1,2,4} Btissam Chami,¹ Philippe Bierling,^{1,2} Frédéric Galactéros,^{2,3,4} Claire Rieux,⁶ Joëlle Nataf,⁷ Pablo Bartolucci,^{2,3,4} Thierry Peyrard,^{4,7,8} and France Pirenne^{1,2,4}

TRANSFUSION 2016;56;1828–1833

Take-home messages

- DTHR Must be diagnosed as early as possible : Additional Transfusion worsens hemolysis => monitoring HbA is key
- Flag your patients with a history of DHTR
- Even a weak Ab / undetectable Ab can be dangerous
- Every specificity can be dangerous (including natural antibodies)
- Investigate partial antigen (mandatory for RH / should be considered for other systems)
- Think about « Low Frequency Antigens » => crossmatch every unit
- Not detecting antibodies does not rule out the diganosis of DHTR (30%)
- Providing units with the matching phenotype is a must but is only one part of the solution
- Extended phenotype units : Implementing a phenotyping / genotyping policy / running a rare donor program
- Disscuss a treatment of DHTR if transfusion is really needed (lifethreatening situations)